Do you want to publish a course? Click here

We investigate estimation of fluctuating channels and its effect on security of continuous-variable quantum key distribution. We propose a novel estimation scheme which is based on the clusterization of the estimated transmittance data. We show that uncertainty about whether the transmittance is fixed or not results in a lower key rate. However, if the total number of measurements is large, one can obtain using our method a key rate similar to the non-fluctuating channel even for highly fluctuating channels. We also verify our theoretical assumptions using experimental data from an atmospheric quantum channel. Our method is therefore promising for secure quantum communication over strongly fluctuating turbulent atmospheric channels.
Transmittance fluctuations in turbulent atmospheric channels result in quadrature excess noise which limits applicability of continuous-variable quantum communication. Such fluctuations are commonly caused by beam wandering around the receiving aperture. We study the possibility to stabilize the fluctuations by expanding the beam, and test this channel stabilization in regard of continuous-variable entanglement sharing and quantum key distribution. We perform transmittance measurements of a real free-space atmospheric channel for different beam widths and show that the beam expansion reduces the fluctuations of the channel transmittance by the cost of an increased overall loss. We also theoretically study the possibility to share an entangled state or to establish secure quantum key distribution over the turbulent atmospheric channels with varying beam widths. We show the positive effect of channel stabilization by beam expansion on continuous-variable quantum communication as well as the necessity to optimize the method in order to maximize the secret key rate or the amount of shared entanglement. Being autonomous and not requiring adaptive control of the source and detectors based on characterization of beam wandering, the method of beam expansion can be also combined with other methods aiming at stabilizing the fluctuating free-space atmospheric channels.
We present a detailed circuit implementation of Szegedys quantization of the Metropolis-Hastings walk. This quantum walk is usually defined with respect to an oracle. We find that a direct implementation of this oracle requires costly arithmetic operations and thus reformulate the quantum walk in a way that circumvents the implementation of that specific oracle and which closely follows the classical Metropolis-Hastings walk. We also present heuristic quantum algorithms that use the quantum walk in the context of discrete optimization problems and numerically study their performances. Our numerical results indicate polynomial quantum speedups in heuristic settings.
Classical and quantum annealing are two heuristic optimization methods that search for an optimal solution by slowly decreasing thermal or quantum fluctuations. Optimizing annealing schedules is important both for performance and fair comparisons between classical annealing, quantum annealing, and other algorithms. Here we present a heuristic approach for the optimization of annealing schedules for quantum annealing and apply it to 3D Ising spin glass problems. We find that if both classical and quantum annealing schedules are similarly optimized, classical annealing outperforms quantum annealing for these problems when considering the residual energy obtained in slow annealing. However, when performing many repetitions of fast annealing, simulated quantum annealing is seen to outperform classical annealing for our benchmark problems.
With progress in quantum technology more sophisticated quantum annealing devices are becoming available. While they offer new possibilities for solving optimization problems, their true potential is still an open question. As the optimal design of adiabatic algorithms plays an important role in their assessment, we illustrate the aspects and challenges to consider when implementing optimization problems on quantum annealing hardware based on the example of the traveling salesman problem (TSP). We demonstrate that tunneling between local minima can be exponentially suppressed if the quantum dynamics are not carefully tailored to the problem. Furthermore we show that inequality constraints, in particular, present a major hurdle for the implementation on analog quantum annealers. We finally argue that programmable digital quantum annealers can overcome many of these obstacles and can - once large enough quantum computers exist - provide an interesting route to using quantum annealing on a large class of problems.
Surface codes exploit topological protection to increase error resilience in quantum computing devices and can in principle be implemented in existing hardware. They are one of the most promising candidates for active error correction, not least due to a polynomial-time decoding algorithm which admits one of the highest predicted error thresholds. We consider the dependence of this threshold on underlying assumptions including different noise models, and analyze the performance of a minimum weight perfect matching (MWPM) decoding compared to a mathematically optimal maximum likelihood (ML) decoding. Our ML algorithm tracks the success probabilities for all possible corrections over time and accounts for individual gate failure probabilities and error propagation due to the syndrome measurement circuit. We present the very first evidence for the true error threshold of an optimal circuit level decoder, allowing us to draw conclusions about what kind of improvements are possible over standard MWPM.
Satisfiability filters, introduced by S. A. Weaver et al. in 2014, are a new and promising type of filters to address set membership testing. In order to construct satisfiability filters, it is necessary to find disparate solutions to hard random $k$-SAT problems. This paper compares simulated annealing, simulated quantum annealing and walkSAT, an open-source SAT solver, in terms of their ability to find such solutions. The results indicate that solutions found by simulated quantum annealing are generally less disparate than solutions found by the other solvers and therefore less useful for the construction of satisfiability filters.
Digital signatures guarantee the authorship of electronic communications. Currently used classical signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes.
152 - Bettina Heim 2014
The strongest evidence for superiority of quantum annealing on spin glass problems has come from comparing simulated quantum annealing using quantum Monte Carlo (QMC) methods to simulated classical annealing [G. Santoro et al., Science 295, 2427(2002)]. Motivated by experiments on programmable quantum annealing devices we revisit the question of when quantum speedup may be expected for Ising spin glass problems. We find that even though a better scaling compared to simulated classical annealing can be achieved for QMC simulations, this advantage is due to time discretization and measurements which are not possible on a physical quantum annealing device. QMC simulations in the physically relevant continuous time limit, on the other hand, do not show superiority. Our results imply that care has to be taken when using QMC simulations to assess quantum speedup potential and are consistent with recent arguments that no quantum speedup should be expected for two-dimensional spin glass problems.
We investigate the properties of an atmospheric channel for free space quantum communication with continuous polarization variables. In our prepare-and-measure setup, coherent polarization states are transmitted through an atmospheric quantum channel of 100m length on the roof of our institutes building. The signal states are measured by homodyne detection with the help of a local oscillator (LO) which propagates in the same spatial mode as the signal, orthogonally polarized to it. Thus the interference of signal and LO is excellent and atmospheric fluctuations are autocompensated. The LO also acts as spatial and spectral filter, which allows for unrestrained daylight operation. Important characteristics for our system are atmospheric channel influences that could cause polarization, intensity and position excess noise. Therefore we study these influences in detail. Our results indicate that the channel is suitable for our quantum communication system in most weather conditions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا