Do you want to publish a course? Click here

Optimal Circuit-Level Decoding for Surface Codes

53   0   0.0 ( 0 )
 Added by Bettina Heim
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface codes exploit topological protection to increase error resilience in quantum computing devices and can in principle be implemented in existing hardware. They are one of the most promising candidates for active error correction, not least due to a polynomial-time decoding algorithm which admits one of the highest predicted error thresholds. We consider the dependence of this threshold on underlying assumptions including different noise models, and analyze the performance of a minimum weight perfect matching (MWPM) decoding compared to a mathematically optimal maximum likelihood (ML) decoding. Our ML algorithm tracks the success probabilities for all possible corrections over time and accounts for individual gate failure probabilities and error propagation due to the syndrome measurement circuit. We present the very first evidence for the true error threshold of an optimal circuit level decoder, allowing us to draw conclusions about what kind of improvements are possible over standard MWPM.



rate research

Read More

Surface codes are among the best candidates to ensure the fault-tolerance of a quantum computer. In order to avoid the accumulation of errors during a computation, it is crucial to have at our disposal a fast decoding algorithm to quickly identify and correct errors as soon as they occur. We propose a linear-time maximum likelihood decoder for surface codes over the quantum erasure channel. This decoding algorithm for dealing with qubit loss is optimal both in terms of performance and speed.
Topological quantum error-correcting codes are a promising candidate for building fault-tolerant quantum computers. Decoding topological codes optimally, however, is known to be a computationally hard problem. Various decoders have been proposed that achieve approximately optimal error thresholds. Due to practical constraints, it is not known if there exists an obvious choice for a decoder. In this paper, we introduce a framework which can combine arbitrary decoders for any given code to significantly reduce the logical error rates. We rely on the crucial observation that two different decoding techniques, while possibly having similar logical error rates, can perform differently on the same error syndrome. We use machine learning techniques to assign a given error syndrome to the decoder which is likely to decode it correctly. We apply our framework to an ensemble of Minimum-Weight Perfect Matching (MWPM) and Hard-Decision Re-normalization Group (HDRG) decoders for the surface code in the depolarizing noise model. Our simulations show an improvement of 38.4%, 14.6%, and 7.1% over the pseudo-threshold of MWPM in the instance of distance 5, 7, and 9 codes, respectively. Lastly, we discuss the advantages and limitations of our framework and applicability to other error-correcting codes. Our framework can provide a significant boost to error correction by combining the strengths of various decoders. In particular, it may allow for combining very fast decoders with moderate error-correcting capability to create a very fast ensemble decoder with high error-correcting capability.
70 - A. Bolt , D. Poulin , 2018
Foliated quantum codes are a resource for fault-tolerant measurement-based quantum error correction for quantum repeaters and for quantum computation. They represent a general approach to integrating a range of possible quantum error correcting codes into larger fault-tolerant networks. Here we present an efficient heuristic decoding scheme for foliated quantum codes, based on message passing between primal and dual code sheets. We test this decoder on two different families of sparse quantum error correcting code: turbo codes and bicycle codes, and show reasonably high numerical performance thresholds. We also present a construction schedule for building such code states.
120 - John Napp , John Preskill 2012
We study the performance of Bacon-Shor codes, quantum subsystem codes which are well suited for applications to fault-tolerant quantum memory because the error syndrome can be extracted by performing two-qubit measurements. Assuming independent noise, we find the optimal block size in terms of the bit-flip error probability p_X and the phase error probability p_Z, and determine how the probability of a logical error depends on p_X and p_Z. We show that a single Bacon-Shor code block, used by itself without concatenation, can provide very effective protection against logical errors if the noise is highly biased (p_Z / p_X >> 1) and the physical error rate p_Z is a few percent or below. We also derive an upper bound on the logical error rate for the case where the syndrome data is noisy.
98 - Markus Grassl 2003
We present families of quantum error-correcting codes which are optimal in the sense that the minimum distance is maximal. These maximum distance separable (MDS) codes are defined over q-dimensional quantum systems, where q is an arbitrary prime power. It is shown that codes with parameters [[n,n-2d+2,d]]_q exist for all 3 <= n <= q and 1 <= d <= n/2+1. We also present quantum MDS codes with parameters [[q^2,q^2-2d+2,d]]_q for 1 <= d <= q which additionally give rise to shortened codes [[q^2-s,q^2-2d+2-s,d]]_q for some s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا