Do you want to publish a course? Click here

While many questions in (robust) finance can be posed in the martingale optimal transport (MOT) framework, others require to consider also non-linear cost functionals. Following the terminology of Gozlan, Roberto, Samson and Tetali this corresponds to weak martingale optimal transport (WMOT). In this article we establish stability of WMOT which is important since financial data can give only imprecise information on the underlying marginals. As application, we deduce the stability of the superreplication bound for VIX futures as well as the stability of stretched Brownian motion and we derive a monotonicity principle for WMOT.
We consider a generalization of the discrete-time Self Healing Umbrella Sampling method, which is an adaptive importance technique useful to sample multimodal target distributions. The importance function is based on the weights (namely the relative probabilities) of disjoint sets which form a partition of the space. These weights are unknown but are learnt on the fly yielding an adaptive algorithm. In the context of computational statistical physics, the logarithm of these weights is, up to a multiplicative constant, the free energy, and the discrete valued function defining the partition is called the collective variable. The algorithm falls into the general class of Wang-Landau type methods, and is a generalization of the original Self Healing Umbrella Sampling method in two ways: (i) the updating strategy leads to a larger penalization strength of already visited sets in order to escape more quickly from metastable states, and (ii) the target distribution is biased using only a fraction of the free energy, in order to increase the effective sample size and reduce the variance of importance sampling estimators. The algorithm can also be seen as a generalization of well-tempered metadynamics. We prove the convergence of the algorithm and analyze numerically its efficiency on a toy example.
We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain Monte Carlo algorithms, when the dynamics is metastable. We prove the convergence of the Wang-Landau algorithm and an associated central limit theorem.
117 - Benjamin Jourdain 2010
Taking advantage of the recent litterature on exact simulation algorithms (Beskos, Papaspiliopoulos and Roberts) and unbiased estimation of the expectation of certain fonctional integrals (Wagner, Beskos et al. and Fearnhead et al.), we apply an exact simulation based technique for pricing continuous arithmetic average Asian options in the Black and Scholes framework. Unlike existing Monte Carlo methods, we are no longer prone to the discretization bias resulting from the approximation of continuous time processes through discrete sampling. Numerical results of simulation studies are presented and variance reduction problems are considered.
Adaptive Monte Carlo methods are very efficient techniques designed to tune simulation estimators on-line. In this work, we present an alternative to stochastic approximation to tune the optimal change of measure in the context of importance sampling for normal random vectors. Unlike stochastic approximation, which requires very fine tuning in practice, we propose to use sample average approximation and deterministic optimization techniques to devise a robust and fully automatic variance reduction methodology. The same samples are used in the sample optimization of the importance sampling parameter and in the Monte Carlo computation of the expectation of interest with the optimal measure computed in the previous step. We prove that this highly dependent Monte Carlo estimator is convergent and satisfies a central limit theorem with the optimal limiting variance. Numerical experiments confirm the performance of this estimator: in comparison with the crude Monte Carlo method, the computation time needed to achieve a given precision is divided by a factor between 3 and 15.
In the particular case of a concave flux function, we are interested in the long time behaviour of the nonlinear process associated to the one-dimensional viscous scalar conservation law. We also consider the particle system obtained by remplacing the cumulative distribution function in the drift coefficient of this nonlinear process by the empirical cdf. We first obtain trajectorial propagation of chaos result. Then, Poincare inequalities are used to get explicit estimates concerning the long time behaviour of both the nonlinear process and the particle system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا