No Arabic abstract
We consider a generalization of the discrete-time Self Healing Umbrella Sampling method, which is an adaptive importance technique useful to sample multimodal target distributions. The importance function is based on the weights (namely the relative probabilities) of disjoint sets which form a partition of the space. These weights are unknown but are learnt on the fly yielding an adaptive algorithm. In the context of computational statistical physics, the logarithm of these weights is, up to a multiplicative constant, the free energy, and the discrete valued function defining the partition is called the collective variable. The algorithm falls into the general class of Wang-Landau type methods, and is a generalization of the original Self Healing Umbrella Sampling method in two ways: (i) the updating strategy leads to a larger penalization strength of already visited sets in order to escape more quickly from metastable states, and (ii) the target distribution is biased using only a fraction of the free energy, in order to increase the effective sample size and reduce the variance of importance sampling estimators. The algorithm can also be seen as a generalization of well-tempered metadynamics. We prove the convergence of the algorithm and analyze numerically its efficiency on a toy example.
The Self-Healing Umbrella Sampling (SHUS) algorithm is an adaptive biasing algorithm which has been proposed to efficiently sample a multimodal probability measure. We show that this method can be seen as a variant of the well-known Wang-Landau algorithm. Adapting results on the convergence of the Wang-Landau algorithm, we prove the convergence of the SHUS algorithm. We also compare the two methods in terms of efficiency. We finally propose a modification of the SHUS algorithm in order to increase its efficiency, and exhibit some similarities of SHUS with the well-tempered metadynamics method.
In the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performance of a given simulation kernel can clarify a posteriori how adequate this kernel is for the problem at hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm. While the issue is most often intractable for MCMC algorithms, the equivalent version for importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions for adaptive mixtures of population Monte Carlo algorithms and show that Rao--Blackwelliz
Adaptive Monte Carlo methods are very efficient techniques designed to tune simulation estimators on-line. In this work, we present an alternative to stochastic approximation to tune the optimal change of measure in the context of importance sampling for normal random vectors. Unlike stochastic approximation, which requires very fine tuning in practice, we propose to use sample average approximation and deterministic optimization techniques to devise a robust and fully automatic variance reduction methodology. The same samples are used in the sample optimization of the importance sampling parameter and in the Monte Carlo computation of the expectation of interest with the optimal measure computed in the previous step. We prove that this highly dependent Monte Carlo estimator is convergent and satisfies a central limit theorem with the optimal limiting variance. Numerical experiments confirm the performance of this estimator: in comparison with the crude Monte Carlo method, the computation time needed to achieve a given precision is divided by a factor between 3 and 15.
The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of the deterministic multiple mixture estimator of Owen and Zhou (2000). Although the convergence properties of the algorithm cannot be fully investigated, we demonstrate through a challenging banana shape target distribution and a population genetics example that the improvement brought by this technique is substantial.
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov Chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.