Do you want to publish a course? Click here

127 - S. Fabi , B. Harms , S. Hou 2013
We present the geometric formulation of gravity based on the mathematical structure of a Lie Algebroid. We show that this framework provides the geometrical setting to describe the gauge propriety of gravity.
172 - R. Casadio , B. Harms 2011
The microcanonical ensemble is the proper ensemble to describe black holes which are not in thermodynamic equilibrium, such as radiating black holes. This choice of ensemble eliminates the problems, e.g. negative specific heat and loss of unitarity, encountered when the canonical ensemble is used. In this review we present an overview of the weaknesses of the standard thermodynamic description of black holes and show how the microcanonical approach can provide a consistent description of black holes and their Hawking radiation at all energy scales. Our approach is based on viewing the horizon area as yielding the ensemble density at fixed system energy. We then compare the decay rates of black holes in the two different pictures. Our description is particularly relevant for the analysis of micro-black holes whose existence is predicted in models with extra- spatial dimensions.
134 - S. Fabi , B. Harms , A. Stern 2008
Upon applying Chamseddines noncommutative deformation of gravity we obtain the leading order noncommutative corrections to the Robertson-Walker metric tensor. We get an isotropic inhomogeneous metric tensor for a certain choice of the noncommutativity parameters. Moreover, the singularity of the commutative metric at $t=0$ is replaced by a more involved space-time structure in the noncommutative theory. In a toy model we construct a scenario where there is no singularity at $t=0$ at leading order in the noncommutativity parameter. Although singularities may still be present for nonzero $t$, they need not be the source of all time-like geodesics and the result resembles a bouncing cosmology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا