Do you want to publish a course? Click here

The aim of this paper is to generalize the classical formula $e^xye^{-x}=sumlimits_{kge 0} frac{1}{k!} (ad~x)^k(y)$ by replacing $e^x$ with any formal power series $displaystyle {f(x)=1+sum_{kge 1} a_kx^k}$. We also obtain combinatorial applications to $q$-exponentials, $q$-binomials, and Hall-Littlewood polynomials.
We generalize the decomposition of $U_q(mathfrak g)$ introduced by A. Joseph and relate it, for $mathfrak g$ semisimple, to the celebrated computation of central elements due to V. Drinfeld. In that case we construct a natural basis in the center of $U_q(mathfrak g)$ whose elements behave as Schur polynomials and thus explicitly identify the center with the ring of symmetric functions.
The goal of this note is to study quantum clusters in which cluster variables (not coefficients) commute which each other. It turns out that this property is preserved by mutations. Remarkably, this is equivalent to the celebrated sign coherence conjecture recently proved by M. Gross, P. Hacking, S. Keel and M. Kontsevich
We introduce a new class of bases for quantized universal enveloping algebras $U_q(mathfrak g)$ and other doubles attached to semisimple and Kac-Moody Lie algebras. These bases contain dual canonical bases of upper and lower halves of $U_q(mathfrak g)$ and are invariant under many symmetries including all Lusztigs symmetries if $mathfrak g$ is semisimple. It also turns out that a part of a double canonical basis of $U_q(mathfrak g)$ spans its center.
The aim of the present paper is to introduce a generalized quantum cluster character, which assigns to each object V of a finitary Abelian category C over a finite field FF_q and any sequence ii of simple objects in C the element X_{V,ii} of the corresponding algebra P_{C,ii} of q-polynomials. We prove that if C was hereditary, then the assignments V-> X_{V,ii} define algebra homomorphisms from the (dual) Hall-Ringel algebra of C to the P_{C,ii}, which generalize the well-known Feigin homomorphisms from the upper half of a quantum group to q-polynomial algebras. If C is the representation category of an acyclic valued quiver (Q,d) and ii=(ii_0,ii_0), where ii_0 is a repetition-free source-adapted sequence, then we prove that the ii-character X_{V,ii} equals the quantum cluster character X_V introduced earlier by the second author in [29] and [30]. Using this identification, we deduce a quantum cluster structure on the quantum unipotent cell corresponding to the square of a Coxeter element. As a corollary, we prove a conjecture from the joint paper [5] of the first author with A. Zelevinsky for such quantum unipotent cells. As a byproduct, we construct the quantum twist and prove that it preserves the triangular basis introduced by A. Zelevinsky and the first author in [6].
In the present paper we show that Hall algebras of finitary exact categories behave like quantum groups in the sense that they are generated by indecomposable objects. Moreover, for a large class of such categories, Hall algebras are generated by their primitive elements, with respect to the natural comultiplication, even for non-hereditary categories. Finally, we introduce certain primitively generated subalgebras of Hall algebras and conjecture an analogue of Lie correspondence for those finitary categories.
The goal of this paper is to construct quantum analogues of Chevalley groups inside completions of quantum groups or, more precisely, inside completions of Hall algebras of finitary categories. In particular, we obtain pentagonal and other identities in the quantum Chevalley groups which generalize their classical counterparts and explain Faddeev-Volkov quantum dilogarithmic identities and their recent generalizations due to Keller
In this paper we explicitly compute all Littlewood-Richardson coefficients for semisimple or Kac-Moody groups G, that is, the structure coefficients of the cohomology algebra H^*(G/P), where P is a parabolic subgroup of G. These coefficients are of importance in enumerative geometry, algebraic combinatorics and representation theory. Our formula for the Littlewood-Richardson coefficients is given in terms of the Cartan matrix and the Weyl group of G. However, if some off-diagonal entries of the Cartan matrix are 0 or -1, the formula may contain negative summands. On the other hand, if the Cartan matrix satisfies $a_{ij}a_{ji}ge 4$ for all $i,j$, then each summand in our formula is nonnegative that implies nonnegativity of all Littlewood-Richardson coefficients. We extend this and other results to the structure coefficients of the T-equivariant cohomology of flag varieties G/P and Bott-Samelson varieties Gamma_ii(G).
We give an elementary proof of the Kontsevich conjecture that asserts that the iterations of the noncommutative rational map K_r:(x,y)-->(xyx^{-1},(1+y^r)x^{-1}) are given by noncommutative Laurent polynomials.
In the present paper we introduce a quantum analogue of the classical folding of a simply-laced Lie algebra g to the non-simply-laced algebra g^sigma along a Dynkin diagram automorphism sigma of g For each quantum folding we replace g^sigma by its Langlands dual g^sigma^v and construct a nilpotent Lie algebra n which interpolates between the nilpotnent parts of g and (g^sigma)^v, together with its quantized enveloping algebra U_q(n) and a Poisson structure on S(n). Remarkably, for the pair (g, (g^sigma)^v)=(so_{2n+2},sp_{2n}), the algebra U_q(n) admits an action of the Artin braid group Br_n and contains a new algebra of quantum n x n matrices with an adjoint action of U_q(sl_n), which generalizes the algebras constructed by K. Goodearl and M. Yakimov in [12]. The hardest case of quantum folding is, quite expectably, the pair (so_8,G_2) for which the PBW presentation of U_q(n) and the corresponding Poisson bracket on S(n) contain more than 700 terms each.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا