Do you want to publish a course? Click here

We present profiles of temperature (Tx), gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH HST and ground-based lensing data. Radial profiles of Chandra and XMM electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in Tx measurements. Encouragingly, cluster Txs are consistent with one another at ~100-200 kpc radii but XMM Tx systematically decline relative to Chandra Tx at larger radii. The angular dependence of the discrepancy suggests additional investigation on systematics such as the XMM point spread function correction, vignetting and off-axis responses. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. Ratios of Chandra HSE mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the WL and SaWLens data are different. e.g., the weighted-mean value at 0.5 Mpc is <b> = 0.12 for the WL comparison and <b> = -0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias of value rising to <b>~0.3 at ~1 Mpc for the WL comparison and <b> of 0.25 for SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value 1/8 times the total-mass profiles inferred from lensing at 0.5 Mpc and remain constant outside of that radius, suggesting that [8xMgas] profiles may be an excellent proxy for total-mass profiles at >0.5 Mpc in massive galaxy clusters.
We present the results from a weak gravitational lensing study of the merging cluster A520 based on the analysis of Hubble Space Telescope/Advanced Camera for Surveys (ACS) data. The excellent data quality allows us to reach a mean number density of source galaxies of ~109 per sq. arcmin, which improves both resolution and significance of the mass reconstruction compared to a previous study based on Wide Field Planetary Camera 2 (WFPC2) images. We take care in removing instrumental effects such as the trailing of charge due to radiation damage of the ACS detector and the position-dependent point spread function (PSF). This new ACS analysis confirms the previous claims that a substantial amount of dark mass is present between two luminous subclusters. We examine the distribution of cluster galaxies and observe very little light at this location. We find that the centroid of the dark peak in the current ACS analysis is offset to the southwest by ~1 arcmin with respect to the centroid from the WFPC2 analysis. Interestingly, this new centroid is in better spatial agreement with the location where the X-ray emission is strongest, and the mass-to-light ratio estimated with this centroid is much higher 813+-78 M_sun/L_Rsun than the previous value; the aperture mass based on the WFPC2 centroid provides a slightly lower, but consistent mass. Although we cannot provide a definite explanation for the presence of the dark peak, we discuss a revised scenario, wherein dark matter with a more conventional range sigma_DM/m_DM < 1 cm^2/g of self-interacting cross-section can lead to the detection of this dark substructure. If supported by detailed numerical simulations, this hypothesis opens up the possibility that the A520 system can be used to establish a lower limit of the self-interacting cross-section of dark matter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا