Do you want to publish a course? Click here

We study zero-forcing detection (ZF) for multiple-input/multiple-output (MIMO) spatial multiplexing under transmit-correlated Rician fading for an N_R X N_T channel matrix with rank-1 line-of-sight (LoS) component. By using matrix transformations and multivariate statistics, our exact analysis yields the signal-to-noise ratio moment generating function (m.g.f.) as an infinite series of gamma distribution m.g.f.s and analogous series for ZF performance measures, e.g., outage probability and ergodic capacity. However, their numerical convergence is inherently problematic with increasing Rician K-factor, N_R , and N_T. We circumvent this limitation as follows. First, we derive differential equations satisfied by the performance measures with a novel automated approach employing a computer-algebra tool which implements Groebner basis computation and creative telescoping. These differential equations are then solved with the holonomic gradient method (HGM) from initial conditions computed with the infinite series. We demonstrate that HGM yields more reliable performance evaluation than by infinite series alone and more expeditious than by simulation, for realistic values of K , and even for N_R and N_T relevant to large MIMO systems. We envision extending the proposed approaches for exact analysis and reliable evaluation to more general Rician fading and other transceiver methods.
We prove an Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm for self-normalized martingales. Our proof is given in the framework of the game-theoretic probability of Shafer and Vovk. As many other game-theoretic proofs, our proof is self-contained and explicit.
We apply the holonomic gradient method to compute the distribution function of a weighted sum of independent noncentral chi-square random variables. It is the distribution function of the squared length of a multivariate normal random vector. We treat this distribution as an integral of the normalizing constant of the Fisher-Bingham distribution on the unit sphere and make use of the partial differential equations for the Fisher-Bingham distribution.
We propose a power-law decay model with autocorrelation for posting data to social networking services concerning particular events such as national holidays or major sport events. In these kinds of events we observe peoples interest both before and after the events. In our model the number of postings has a Poisson distribution whose expected value decays as a power law. Our model also incorporates autocorrelations by autoregressive specification of the expected value. We show that our proposed model well fits the data from social networking services.
We give a game-theoretic proof of the celebrated Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm for fair coin tossing. Our proof, based on Bayesian strategy, is explicit as many other game-theoretic proofs of the laws in probability theory.
This article presents a differential geometrical method for analyzing sequential test procedures. It is based on the primal result on the conformal geometry of statistical manifold developed in Kumon, Takemura and Takeuchi (2011). By introducing curvature-type random variables, the condition is first clarified for a statistical manifold to be an exponential family under an appropriate sequential test procedure. This result is further elaborated for investigating the efficient sequential test in a multidimensional curved exponential family. The theoretical results are numerically examined by using von Mises-Fisher and hyperboloid models.
We derive properties of powers of a function satisfying a second-order linear differential equation. In particular we prove that the n-th power of the function satisfies an (n+1)-th order differential equation and give a simple method for obtaining the differential equation. Also we determine the exponents of the differential equation and derive a bound for the degree of the polynomials, which are coefficients in the differential equation. The bound corresponds to the order of differential equation satisfied by the n-fold convolution of the Fourier transform of the function. These results are applied to some probability density functions used in statistics.
We consider a series of configurations defined by fibers of a given base configuration. We prove that Markov degree of the configurations is bounded from above by the Markov complexity of the base configuration. As important examples of base configurations we consider incidence matrices of graphs and study the maximum Markov degree of configurations defined by fibers of the incidence matrices. In particular we give a proof that the Markov degree for two-way transportation polytopes is three.
For multiple-input multiple-output (MIMO) spatial-multiplexing transmission, zero-forcing detection (ZF) is appealing because of its low complexity. Our recent MIMO ZF performance analysis for Rician--Rayleigh fading, which is relevant in heterogeneous networks, has yielded for the ZF outage probability and ergodic capacity infinite-series expressions. Because they arose from expanding the confluent hypergeometric function $ {_1! F_1} (cdot, cdot, sigma) $ around 0, they do not converge numerically at realistically-high Rician $ K $-factor values. Therefore, herein, we seek to take advantage of the fact that $ {_1! F_1} (cdot, cdot, sigma) $ satisfies a differential equation, i.e., it is a textit{holonomic} function. Holonomic functions can be computed by the textit{holonomic gradient method} (HGM), i.e., by numerically solving the satisfied differential equation. Thus, we first reveal that the moment generating function (m.g.f.) and probability density function (p.d.f.) of the ZF signal-to-noise ratio (SNR) are holonomic. Then, from the differential equation for $ {_1! F_1} (cdot, cdot, sigma) $, we deduce those satisfied by the SNR m.g.f. and p.d.f., and demonstrate that the HGM helps compute the p.d.f. accurately at practically-relevant values of $ K $. Finally, numerical integration of the SNR p.d.f. produced by HGM yields accurate ZF outage probability and ergodic capacity results.
For multiple-input/multiple-output (MIMO) spatial multiplexing with zero-forcing detection (ZF), signal-to-noise ratio (SNR) analysis for Rician fading involves the cumbersome noncentral-Wishart distribution (NCWD) of the transmit sample-correlation (Gramian) matrix. An textsl{approximation} with a textsl{virtual} CWD previously yielded for the ZF SNR an approximate (virtual) Gamma distribution. However, analytical conditions qualifying the accuracy of the SNR-distribution approximation were unknown. Therefore, we have been attempting to exactly characterize ZF SNR for Rician fading. Our previous attempts succeeded only for the sole Rician-fading stream under Rician--Rayleigh fading, by writing it as scalar Schur complement (SC) in the Gramian. Herein, we pursue a more general, matrix-SC-based analysis to characterize SNRs when several streams may undergo Rician fading. On one hand, for full-Rician fading, the SC distribution is found to be exactly a CWD if and only if a channel-mean--correlation textsl{condition} holds. Interestingly, this CWD then coincides with the textsl{virtual} CWD ensuing from the textsl{approximation}. Thus, under the textsl{condition}, the actual and virtual SNR-distributions coincide. On the other hand, for Rician--Rayleigh fading, the matrix-SC distribution is characterized in terms of determinant of matrix with elementary-function entries, which also yields a new characterization of the ZF SNR. Average error probability results validate our analysis vs.~simulation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا