Do you want to publish a course? Click here

Using {it ab initio} density functional theory, here we systematically study the monolayer MoOCl$_2$ with a $4d^2$ electronic configuration. Our main results is that an orbital-selective Peierls phase (OSPP) develops in MoOCl$_2$, resulting in the dimerization of the Mo chain along the $b$-axis. Specifically, the Mo-$d_{xy}$ orbitals form robust molecular-orbital states inducing localized $d_{xy}$ singlet dimers, while the Mo-$d_{xz/yz}$ orbitals remain delocalized and itinerant. Our study shows that MoOCl$_2$ is globally metallic, with the Mo-$d_{xy}$ orbital bonding-antibonding splittings opening a gap and the Mo-$d_{xz/yz}$ orbitals contributing to the metallic conductivity. Overall, the results resemble the recently much discussed orbital-selective Mott phase but with the localized band induced by a Peierls distortion instead of Hubbard interactions. Finally, we also qualitatively discuss the possibility of OSPP in the $3d^2$ configuration, as in CrOCl$_2$.
Using {it ab initio} density functional theory and single-orbital Hubbard model calculations via the density matrix renormalization group method, we systematically studied the monolayer VOI$_2$ with a $3d^1$ electronic configuration. Our phonon calculations indicate that the orthorhombic $Pmm2$ FE-II phase is the most likely ground state, involving a ferroelectric distortion along the $a$-axis and V-V dimerization along the $b$-axis. Specifically, the pseudo Jahn-Teller effect caused by the coupling between empty V ($d_{xz/yz}$ and $d_{3z^2-r^2}$) and O $2p$ states is proposed as the mechanism that stabilizes the ferroelectric distortion from the paraelectric phase. Moreover, the half-filled metallic $d_{xy}$ band displays a Peierls instability along the $b$-axis, inducing a V-V dimerization. We also found very short-range antiferromagnetic coupling along the V-V chain due to the formation of nearly-decoupled spin singlets in the ground state.
Since the discovery of pressure-induced superconductivity in the two-leg ladder system BaFe$_2X_3$ ($X$=S, Se), with the 3$d$ iron electronic density $n = 6$, the quasi-one-dimensional iron-based ladders have attracted considerable attention. Here, we use Density Functional Theory (DFT) to predict that the novel $n = 6$ iron ladder BaFe$_2$Te$_3$ could be stable with a similar crystal structure as BaFe$_2$Se$_3$. Our results also indicate that BaFe$_2$Te$_3$ will display the complex 2$times$2 Block-type magnetic order. Due to the magnetic striction effects of this Block order, BaFe$_2$Te$_3$ should be a magnetic noncollinear ferrielectric system with a net polarization $0.31$ $mu$C/cm$^2$. Compared with the S- or Se-based iron ladders, the electrons of the Te-based ladders are more localized, implying that the degree of electronic correlation is enhanced for the Te case which may induce additional interesting properties. The physical and structural similarity with BaFe$_2$Se$_3$ also suggests that BaFe$_2$Te$_3$ could become superconducting under high pressure.
A series of oxytetrahalides WO$X_4$ ($X$: a halogen element) that form quasi-one-dimensional chains is investigated using first-principles calculations. The crystal structures, electronic structures, as well as ferroelectric and piezoelectric properties are discussed in detail. Group theory analysis shows that the ferroelectricity in this family originates from an unstable polar phonon mode $Gamma_1^-$ induced by the Ws $d^0$ orbital configuration. Their polarization magnitudes are found to be comparable to widely used ferroelectric perovskites. Because of its quasi-one-dimensional characteristics, the inter-chain domain wall energy density is low, leading to loosely-coupled ferroelectric chains. This is potentially beneficial for high density ferroelectric memories: we estimate that the upper-limit of memory density in these compounds could reach hundreds of terabytes per square inch.
The recent discovery of superconductivity at high pressure in the two-leg ladder compounds BaFe$_2X_3$ ($X$=S, Se) started the novel field of quasi-one-dimensional iron-based superconductors. In this publication, we use Density Functional Theory (DFT) to predict that the previously barely explored ladder compound RbFe$_2$Te$_3$ should be magnetic with a CX-type arrangement involving ferromagnetic rungs and antiferromagnetic legs, at the realistic density of $n=5.5$ electrons per iron. The magnetic state similarity with BaFe$_2$S$_3$ suggests that RbFe$_2$Te$_3$ could also become superconducting under pressure. Moreover, at $n=6.0$ our DFT phase diagrams (with and without lattice tetramerization) reveal that the stable magnetic states could be either a 2$times$2 magnetic Block-type, as for $X$=Se, or a previously never observed before CY-type state, with ferromagnetic legs and antiferromagnetic rungs. In the Te-based studies, electrons are more localized than in S, implying that the degree of electronic correlation is enhanced for the Te case.
We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hunds metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density and Hubbard $U$, at robust Hunds coupling. We demonstrate that this transition is preempted by charge fluctuations and the emergence of free spinless fermions, as opposed to the magnetically-driven Mott transition. The Luttinger correlation exponent is shown to have a universal value in the strong-coupling phase, whereas it is interaction dependent at intermediate couplings. At weak coupling we find a second transition from a normal metal to the intermediate-coupling phase.
The orbital-selective Mott phase (OSMP) of multiorbital Hubbard models has been extensively analyzed before using static and dynamical mean-field approximations. In parallel, the properties of Block states (antiferromagnetically coupled ferromagnetic spin clusters) in Fe-based superconductors have also been much discussed. The present effort uses numerically exact techniques in one-dimensional systems to report the observation of Block states within the OSMP regime, connecting two seemingly independent areas of research, and providing analogies with the physics of Double-Exchange models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا