Do you want to publish a course? Click here

We simulate SU(2) gauge theory at temperatures ranging from slightly below $T_c$ to roughly $2T_c$ for two different values of the gauge coupling. Using a histogram method, we extract the effective potential for the Polyakov loop and for the phases of the eigenvalues of the thermal Wilson loop, in both the fundamental and adjoint representations. We show that the classical potential of the fundamental loop can be parametrized within a simple model which includes a Vandermonde potential and terms linear and quadratic in the Polyakov loop. We discuss how parametrizations for the other cases can be obtained from this model.
We present a brief review of recent theoretical developments and related phenomenological approaches for understanding the initial state of heavy-ion collisions, with emphasis on the Color Glass Condensate formalism.
We perform simulations of an effective theory of SU(2) Wilson lines in three dimensions. We include a non-perturbative fuzzy-bag contribution which is added to the one-loop perturbative potential for the Wilson line. We confirm that, at moderately weak coupling, this leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase.
This note is a physics manual for a recent numerical implementation of k_t-factorization with running-coupling BK unintegrated gluon distributions. We also compile some results for Pb+Pb collisions at sqrt{s} = 2.75 TeV, such as predictions for the centrality dependence of the charged particle multiplicity and transverse energy. The model can further be used to obtain initial conditions for hydrodynamic simulations of A+A collisions at the LHC.
We consider momentum broadening and energy loss of high momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice spacing independent. We find that the transport coefficient $hat{q}$ corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the $p_perp$-distribution of high-momentum partons. We establish the scaling of $hat{q}$ and of $dE/dx$ with density, temperature and energy in the weak-coupling regime. We also estimate the nuclear modification factor $R_{AA}$ due to elastic energy loss of a jet in a classical Yang-Mills field.
We perform numerical simulations of the QCD Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. We provide an estimate of the coupling of jets to a hot plasma which is independent of infrared cutoffs. For weakly-coupled anisotropic plasmas the local rotational symmetry in momentum space is broken. The fields develop unstable modes, forming configurations where B_t>E_t and E_z>B_z. This provides a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth.
We determine the time evolution of fluctuations of the Polyakov loop after a quench into the deconfined phase of SU(3) gauge theory from a simple classical relativistic Lagrangian. We compare the structure factors, which indicate spinodal decomposition followed by relaxation, to those obtained via Markov Chain Monte Carlo techniques in SU(3) lattice gauge theory. We find that the time when the structure factor peaks diverges like $sim 1/k^2$ in the long-wavelength limit. This is due to formation of competing Z(3) domains for configurations where the Polyakov loop exhibits non-perturbatively large variations in space, which delay thermalization of long wavelength modes. For realistic temperatures, and away from the extreme weak-coupling limit, we find that even modes with $k$ on the order of $T$ experience delayed thermalization. Relaxation times of very long wavelength modes are found to be on the order of the size of the system; thus, the dynamics of competing domains should accompany the hydrodynamic description of the deconfined vacuum.
We present numerical simulations of the SU(2) Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. We provide an estimate of the coupling of jets to a hot isotropic plasma, which is independent of infrared cutoffs. In addition, we investigate jet propagation in anisotropic plasmas, as created in heavy-ion collisions. The broadening of jets is found to be stronger along the beam line than in azimuth due to the creation of field configurations with B_t>E_t and E_z>B_z via plasma instabilities.
We investigate the consequences of long range rapidity correlations in the Glasma. Particles produced locally in the transverse plane are correlated by approximately boost invariant flux tubes of longitudinal color electric and magnetic fields that are formed when two sheets of Colored Glass Condensate pass through one another, each acquiring a modified color charge density in the collision. We argue that such long range rapidity correlations persist during the evolution of the Quark Gluon Plasma formed later in the collision. When combined with transverse flow, these correlations reproduce many of the features of the recently observed ridge events in heavy ion collisions at RHIC.
We determine the hard-loop resummed propagator in an anisotropic QCD plasma in general covariant gauges and define a potential between heavy quarks from the Fourier transform of its static limit. We find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا