Do you want to publish a course? Click here

We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the QG energy scale (the energy scale that LIV-inducing QG effects become important, E_QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB090510 and are E_{QG,1}>7.6 times the Planck energy (E_Pl) and E_{QG,2}>1.3 x 10^11 GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of ~2. Our results disfavor any class of models requiring E_{QG,1} lesssim E_Pl.
Lorentz Invariance Violation (LIV) may be a good observational window on Quantum Gravity physics. Within last few years, all major Gamma-ray experiments have published results from the search for LIV with variable astrophysical sources: gamma-ray bursts with detectors on-board satellites and Active Galactic Nuclei with ground-based experiments. In this paper, the recent time-of-flight studies with unpolarized photons published from the space and ground based observations are reviewed. Various methods used in the time delay searches are described, and their performance discussed. Since no significant time-lag value was found within experimental precision of the measurements, the present results consist of 95% confidence cevel limits on the Quantum Gravity scale on the linear and quadratic terms in the standard photon dispersion relations.
Highly energetic, variable and distant sources such as Active Galactic Nuclei provide a good opportunity to evaluate effects due to the emission and the propagation of high energy photons. In this note, a study of possible energy-dependent time-lags with PKS 2155-304 light curve as measured by H.E.S.S. in July 2006 is presented. These time-lags could either come from the emission processes or also sign a Lorentz Symmetry breaking as predicted in some Quantum Gravity models. A Cross-Correlation function and a Wavelet Transform were used to measure the time-lags. The 95% Confidence Limit on the Quantum Gravity energy scale based on the statistical and systematic error evaluation was found to be 7x10^17 GeV considering a linear correction in the standard photon dispersion relations and assuming that emission-induced time-lags are negligible. For now, this limit is the best ever obtained with a blazar.
We study the complementarity between the indirect detection of dark matter with gamma-rays in H.E.S.S. and the supersymmetry searches with ATLAS at the Large Hadron Collider in the Focus Point region within the mSUGRA framework. The sensitivity of the central telescope of the H.E.S.S. II experiment with an energy threshold of ~ 20 GeV is investigated. We show that the detection of gamma-ray fluxes of O(10^-12) cm-2s-1 with H.E.S.S. II covers a substantial part of the Focus Point region which may be more difficult for LHC experiments. Despite the presence of multi-TeV scalars, we show that LHC will be sensitive to a complementary part of this region through three body NLSP leptonic decays. This interesting complementarity between H.E.S.S. II and LHC searches is further highlighted in terms of the gluino mass and the two lightest neutralino mass difference.
The study of time lags between spikes in Gamma-Ray Bursts light curves in different energy bands as a function of redshift may lead to the detection of effects due to Quantum Gravity. We present an analysis of 15 Gamma-Ray Bursts with measured redshift, detected by the HETE-2 mission between 2001 and 2006 in order to measure time lags related to astrophysical effects and search for Quantum Gravity signature in the framework of an extra-dimension string model. The use of photon-tagged data allows us to consider various energy ranges. Systematic effects due to selection and cuts are evaluated. No significant Quantum Gravity effect is detected from the study of the maxima of the light curves and a lower limit at 95% Confidence Level on the Quantum Gravity scale parameter of 3.2x10**15 GeV is set.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا