Do you want to publish a course? Click here

We have performed time-resolved resonant x-ray scattering studies in the Lanthanide metal Dy to reveal the dynamic response of the helical order exchange coupling to injection of unpolarized spins. The observed spin dynamics are significantly slower than that exhibited by the ferromagnetic phase in Lanthanide metals and are strongly dependent on temperature and excitation fluence. This unique behavior results from transient changes in the shape of the conduction electron Fermi surface and subsequent scattering events that transfer the excitation to the core spin.
Using realistic multi-orbital tight-binding Hamiltonians and the T-matrix formalism, we explore the effects of a non-magnetic impurity on the local density of states in Fe-based compounds. We show that scanning tunneling spectroscopy (STS) has very specific anisotropic signatures that track the evolution of orbital splitting (OS) and antiferromagnetic gaps. Both anisotropies exhibit two patterns that split in energy with decreasing temperature, but for OS these two patterns map onto each other under 90 degree rotation. STS experiments that observe these signatures should expose the underlying magnetic and orbital order as a function of temperature across various phase transitions.
The unoccupied states of complex materials are difficult to measure, yet play a key role in determining their properties. We propose a technique that can measure the unoccupied states, called time-resolved Compton scattering, which measures the time-dependent momentum distribution (TDMD). Using a non-equilibrium Keldysh formalism, we study the TDMD for electrons coupled to a lattice in a pump-probe setup. We find a direct relation between temporal oscillations in the TDMD and the dispersion of the underlying unoccupied states, suggesting that both can be measured by time-resolved Compton scattering. We demonstrate the experimental feasibility by applying the method to a model of MgB$_2$ with realistic material parameters.
We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering; varying pulse characteristics; and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics play an important role in determining the harmonic spectra.
We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from the second-order diagrams with the polarization operator calculated in the random-phase approximation. We find one-particle scattering rates which are highly anisotropic on each Fermi surface sheet due to the momentum dependence of the spin susceptibility and the multi-orbital composition of each Fermi pocket. This fact, combined with the anisotropy of the effective mass, produces disparity between electrons and holes in conductivity, the Hall coefficient, and the Raman initial slope, in qualitative agreement with experimental data.
Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.
Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave ($A_{1g}$) symmetry ($s^pm$). In particular we focus on the role of the hole pocket at the $(pi,pi)$ point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic $s^pm$ state. The pockets contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap.
Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective 5-orbital tight-binding fit of the full DFT band structure for BaFeAs including the kz dispersions. We compare the 5-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the fluctuation exchange approximation to determine the leading pairing instability, we then examine the differences between a strictly two dimensional model calculation over a single kz cut of the BZ and a completely three dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz = 0 which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.
Evidence of curvature effects on the interaction and binding of silver clusters on folded graphitic surfaces has been shown from both experiment and theory. Density Functional Theory (DFT) calculations within the local density and generalized gradient approximations have been performed for the structural relaxation of both Ag and Ag$_2$ on curved surfaces, showing a cross-over from quantum to classical behaviour. Using Lennard-Jones potential to model the interaction between a single cluster and the graphene surface, evidence is found for the curvature effect on the binding of silver nano-particles to folding graphitic surfaces. The theoretical results are compared to SEM and AFM images of samples obtained from pre-formed silver cluster deposition on carboneous substrates exhibiting anisotropic pleat structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا