Do you want to publish a course? Click here

Theory of two magnon Raman scattering in antiferromagnetic iron pnictides

191   0   0.0 ( 0 )
 Added by Cheng-Chien Chen
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.



rate research

Read More

(Sr$_{2}$,Ba$_{2}$)Cu$_{3}$O$_{4}$Cl$_{2}$ are antiferromagnetic insulators which are akin to the parent compounds of the cuprate superconductors but with two distinct magnetic ordering temperatures related to two magnetic Cu$_{I}$ and Cu$_{II}$ spin sublattices. Here we present a study of these materials by means of Raman spectroscopy. Following the temperature and polarization dependence of the data we readily identify two distinct features at around 3000 cm$^{-1}$ and 300 cm$^{-1}$ that are related to two-magnon scattering from the two sublattices. The estimated spin-exchange coupling constants for the Cu$_{I}$ and Cu$_{II}$ sublattices are found to be J$_{I}sim$139-143(132-136) meV and J$_{II}sim$14(11) meV for Sr(Ba) compounds. Moreover, we observe modes at around 480 and 445 cm$^{-1}$ for the Sr and Ba containing samples respectively, that disappears at the ordering temperature of the Cu$_{II}$. We argue that this modes may also be of magnetic origin and possibly related to interband transitions between the Cu$_{I}$-Cu$_{II}$ sublattices.
We employ the phenomenological theory of the quasiparticle relaxation based on the simplified two-band description and the spin-fluctuation induced interband coupling to analyze recent normal-state transport data in electron-doped iron pnictides, in particular the Ba(Fe_1-x Co_x)_2As_2 family. Temperature dependence of the resistivity, thermopower and the Hall constant are evaluated. It is shown that their anomalous behavior emerging from experiments can be consistently described within the same framework assuming also non-Fermi-liquid spin fluctuations.
255 - C. Liu , D.-X. Yao , 2011
We study a two-orbital spin model to describe (pi,0) stripe antiferromagnetism in the iron pnictides. The double-spin model has an on-site Hundss coupling and inter-site interactions extending to second neighbors (inter- and intra-orbital) on the square lattice. Using a variational method based on a cluster decomposition, we optimize wave functions with up to 8 cluster sites (up to 2^16 variational parameters). We focus on the anomalously small ordered moments in the stripe state of the pnictides. To account for it, and large variations among different compounds, we show that the second-neighbor cross-orbital exchange constant should be ferromagnetic, which leads to partially hidden stripe order, with a moment that can be varied over a large range by small changes in the coupling constants. In a different parameter region, we confirm the existence of a canted state previously found in spin-wave theory. We also identify several other phases of the model.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
140 - Junru Pan , Feng Jin , Jianting Ji 2021
We calculate the two-magnon Raman scattering spectra in antiferromagnetic phases of several frustrated spin models defined on the honeycomb lattice. These include the N{e}el antiferromagnetic phase of a $J_1$-$J_2$-$J_3$ model and the stripe phase of the Heisenberg-Kitaev model. We show that both the magnetic frustration and the anisotropy of interactions may significantly affect the Raman spectra. We further discuss the implications of our results to the magnetic excitations of the iron-based compound BaFe$_2$Se$_2$O and show how the magnetic interactions can be extracted from fit to the Raman spectrum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا