Do you want to publish a course? Click here

We introduce a scheme to perform quantum-information processing that is based on a hybrid spin-photon qubit encoding. The proposed qubits consist of spin-ensembles coherently coupled to microwave photons in coplanar waveguide resonators. The quantum gates are performed solely by shifting the resonance frequencies of the resonators on a ns timescale. An additional cavity containing a Cooper-pair box is exploited as an auxiliary degree of freedom to implement two-qubit gates. The generality of the scheme allows its potential implementation with a wide class of spin systems.
We present a flexible and effective ab-initio scheme to build many-body models for molecular nanomagnets, and to calculate magnetic exchange couplings and zero-field splittings. It is based on using localized Foster-Boys orbitals as one-electron basis. We apply this scheme to three paradigmatic systems, the antiferromagnetic rings Cr8 and Cr7Ni and the single molecule magnet Fe4. In all cases we identify the essential magnetic interactions and find excellent agreement with experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا