Do you want to publish a course? Click here

$mathcal{I}$-non-degenerate spaces are spacetimes that can be characterized uniquely by their scalar curvature invariants. The ultimate goal of the current work is to construct a basis for the scalar polynomial curvature invariants in three dimensional Lorentzian spacetimes. In particular, we seek a minimal set of algebraically independent scalar curvature invariants formed by the contraction of the Riemann tensor and its covariant derivatives up to fifth order of differentiation. We use the computer software emph{Invar} to calculate an overdetermined basis of scalar curvature invariants in three dimensions. We also discuss the equivalence method and the Karlhede algorithm for computing Cartan invariants in three dimensions.
There are a number of algebraic classifications of spacetimes in higher dimensions utilizing alignment theory, bivectors and discriminants. Previous work gave a set of necessary conditions in terms of discriminants for a spacetime to be of a particular algebraic type. We demonstrate the discriminant approach by applying the techniques to the Sorkin-Gross-Perry soliton, the supersymmetric and doubly-spinning black rings and some other higher dimensional spacetimes. We show that even in the case of some very complicated metrics it is possible to compute the relevant discriminants and extract useful information from them.
The locally rotationally symmetric tilted perfect fluid Bianchi type V cosmological model provides examples of future geodesically complete spacetimes that admit a `kinematic singularity at which the fluid congruence is inextendible but all frame components of the Weyl and Ricci tensors remain bounded. We show that for any positive integer n there are examples of Bianchi type V spacetimes admitting a kinematic singularity such that the covariant derivatives of the Weyl and Ricci tensors up to the n-th order also stay bounded. We briefly discuss singularities in classical spacetimes.
115 - A. A. Coley 2008
The Universe is not isotropic or spatially homogeneous on local scales. The averaging of local inhomogeneities in general relativity can lead to significant dynamical effects on the evolution of the Universe, and even if the effects are at the 1% level they must be taken into account in a proper interpretation of cosmological observations. We discuss the effects that averaging (and inhomogeneities in general) can have on the dynamical evolution of the Universe and the interpretation of cosmological data. All deductions about cosmology are based on the paths of photons. We discuss some qualitative aspects of the motion of photons in an averaged geometry, particularly within the context of the luminosity distance-redshift relation in the simple case of spherical symmetry.
151 - A. A. Coley , W. C. Lim , G. Leon 2008
We use the 1+3 frame formalism to write down the evolution equations for spherically symmetric models as a well-posed system of first order PDEs in two variables, suitable for numerical and qualitative analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا