We use the effective action of the $E_n$ non-critical strings to study its BPS spectrum for $0 le n le 8$. We show how to introduce mass parameters, or Wilson lines, into the effective action, and then perform the appropriate asymptotic expansions that yield the BPS spectrum. The result is the $E_n$ character expansion of the spectrum, and is equivalent to performing the mirror map on a Calabi-Yau with up to nine Kahler moduli. This enables a much more detailed examination of the $E_n$ structure of the theory, and provides extensive checks on the effective action description of the non-critical string. We extract some universal ($E_n$ independent) information concerning the degeneracies of BPS excitations.