Zeroth law of thermodynamics for thermalized open quantum systems having integrals of motion


الملخص بالإنكليزية

We study the evolution of an open quantum system described by a dynamical semigroup having the Lindblad superoperator as a generator. This generator may have an eigenfunction with a unity eigenvalue, referred to as a constant of motion (COM). An open quantum system has a unique stationary state if and only if it has no COMs. A system with multiple stationary states has a basis of COMs; any COM of the system is a linear combination of the basis COMs. The basis divides the space of system states into subspaces. Each subspace has its own stationary state, and any stationary state of the system is a linear combination of these states. Usually, neither the basis of COMs nor even the number of COMs is known. We demonstrate that finding the stationary state of the system does not require looking for the COMs. Instead, one can construct a set of invariant subspaces. If the system evolution begins from one of these subspaces, the system will remain in it, arriving at a stationary state independent of evolution in other subspaces. We suggest a direct way of finding the invariant subspaces by studying the evolution of the system. We show that the sets of invariant subspaces and subspaces generated by the basis of COMs are equivalent. A stationary state of the system is a weighted sum of stationary states in each invariant subspace; the weighted factors are determined by the initial state of the system.

تحميل البحث