Spectroscopic detection of CIV in a galaxy at z=7.045: Implications for the ionizing spectra of reionization-era galaxies


الملخص بالإنكليزية

We present Keck/MOSFIRE observations of UV metal lines in four bright gravitationally-lensed z~6-8 galaxies behind the cluster Abell 1703. The spectrum of A1703-zd6, a highly-magnified star forming galaxy with a Lyman-alpha redshift of z=7.045, reveals a confident detection of the nebular CIV emission line (unresolved with FWHM < 125 km/s). UV metal lines are not detected in the three other galaxies. At z~2-3, nebular CIV emission is observed in just 1% of UV-selected galaxies. The presence of strong CIV emission in one of the small sample of galaxies targeted in this paper may indicate hard ionizing spectra are more common at z~7. The total estimated equivalent width of the CIV doublet (38 A) and CIV/Lyman-alpha flux ratio (0.3) are comparable to measurements of narrow-lined AGNs. Photoionization models show that the nebular CIV line can also be reproduced by a young stellar population, with very hot metal poor stars dominating the photon flux responsible for triply ionizing carbon. Regardless of the origin of the CIV, we show that the ionizing spectrum of A1703-zd6 is different from that of typical galaxies at z~2, producing more H ionizing photons per unit 1500A luminosity and a larger flux density at 30-50 eV. If such extreme radiation fields are typical in UV-selected systems at z>7, it would indicate that reionization-era galaxies are more efficient ionizing agents than previously thought. Alternatively, we suggest that the small sample of Lyman-alpha emitters at z>7 may trace a rare population with intense radiation fields capable of ionizing their surrounding hydrogen distribution. Additional constraints on high ionization emission lines in galaxies with and without Lyman-alpha detections will help clarify whether hard ionizing spectra are common in the reionization era.

تحميل البحث