Nematic order by thermal disorder in a three-dimensional lattice-spin model with dipolar-like interactions


الملخص بالإنكليزية

At low temperatures, some lattice spin models with simple ferromagnetic or antiferromagnetic interactions (for example nearest-neighbour interaction being isotropic in spin space on a bipartite three-dimensional lattice) produce orientationally ordered phases exhibiting nematic (second--rank) order, in addition to the primary first-rank one; on the other hand, in the Literature, they have been rather seldom investigated in this respect. Here we study the thermodynamic properties of a three-dimensional model with dipolar-like interaction. Its ground state is found to exhibit full orientational order with respect to a suitably defined staggered magnetization (polarization), but no nematic second-rank order. Extensive Monte Carlo simulations, in conjunction with Finite-Size Scaling analysis have been used for characterizing its critical behaviour; on the other hand, it has been found that nematic order does indeed set in at low temperatures, via a mechanism of order by disorder.

تحميل البحث