تحسنت تقسيم الصور التلقائي بشكل كبير خلال السنوات القليلة الماضية، لكن المشكلة بعيدة عن حلها، حيث لا تزال حالة من النماذج الفنية غالبا ما تنتج توضيحات منخفضة الجودة عند استخدامها في البرية. في هذه الورقة، نركز على مهمة تقدير الجودة (QE) للحصول على تعليق الصور، والتي تحاول طراز جودة التسمية التوضيحية من منظور إنساني و * بدون * الوصول إلى مراجع الحقيقة الأرضية، بحيث يمكن تطبيقها في وقت التنبؤ للكشف عن التسميات التوضيحية منخفضة الجودة المنتجة على * الصور غير المرئية سابقا *. بالنسبة لهذه المهمة، نقوم بتطوير عملية تقييم بشرية تقوم بجمع التعليقات التوضيحية الشعوية من المستخدمين من مستخدمي الجماعة الجماعية، والتي يتم استخدامها بعد ذلك لجمع مجموعة بيانات كبيرة الحجم تمتد أكثر من 600 كيلو بايت تصنيفات جودة التسمية التوضيحية. ثم صرفها بعناية جودة التصنيفات التي تم جمعها وإنشاء نماذج أساسية لهذه المهمة الجديدة في QE. أخيرا، سنقوم بزيادة جمع التعليقات التوضيحية ذات جودة التسمية التوضيحية الجميلة من الدراسات المدربة، واستخدامها لإظهار أن نماذج QE التي تم تدريبها على التصنيفات الخشنة يمكن أن تكتشف بشكل فعال وتصفية التسميات التوضيحية ذات الجودة المنخفضة الجودة، وبالتالي تحسين تجربة المستخدم من أنظمة التسمية التوضيحية.