مساعد شخصي ذكي (IPAS) مثل Amazon Alexa و Assistant Google وسيري سيري يمدد قدراتهم المدمجة من خلال دعم التطبيقات الصوتية التي طورها مطورو الطرف الثالث. في بعض الأحيان يكون المساعد الذكي غير قادر على الاستجابة بنجاح لأوامر صوت المستخدم (ويعرف أيضا باسم الكلام). هناك العديد من الأسباب بما في ذلك خطأ التعرف على الكلام التلقائي (ASR)، وفهم اللغة الطبيعية (NLU)، وتوجيه الكلام إلى تطبيق صوت غير ذي صحي أو ببساطة أن المستخدم يطلب إمكانية غير مدعومة بعد. يؤدي الفشل في التعامل مع أمر صوتي إلى إحباط العملاء. في هذه الورقة، نقدم نظام توصية مهارة الاحتياطية لاقتراح تطبيق صوتي إلى عميل أمر صوتي غير معالج. واحدة من التحديات البارزة في تطوير نظام موصوف المهارات ل IPAS هو ملاحظة جزئية. لحل مشكلة الملاحظة الجزئية، نقترح طريقة إعادة انتكاسات البيانات التعاونية (CDR). بالإضافة إلى ذلك، يحسن CDR أيضا تنوع المهارات الموصى بها. نقيم الطريقة المقترحة على حد سواء دون اتصال وعلى الإنترنت. تظهر نتائج التقييم غير المتصلة بالإنترنت أن النظام المقترح يتفوق على الأساس. تظهر نتائج اختبار Online A / B زيادة كبيرة من مقاييس تجربة العملاء.