Let $K$ be a compact metric space. A real-valued function on $K$ is said to be of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions. In this paper, we study two well known ordinal indices of Baire-1 functions, the oscillation index $beta$ and the convergence index $gamma$. It is shown that these two indices are fully compatible in the following sense : a Baire-1 function $f$ satisfies $beta(f) leq omega^{xi_1} cdot omega^{xi_2}$ for some countable ordinals $xi_1$ and $xi_2$ if and only if there exists a sequence of Baire-1 functions $(f_n)$ converging to $f$ pointwise such that $sup_nbeta(f_n) leq omega^{xi_1}$ and $gamma((f_n)) leq omega^{xi_2}$. We also obtain an extension result for Baire-1 functions analogous to the Tietze Extension Theorem. Finally, it is shown that if $beta(f) leq omega^{xi_1}$ and $beta(g) leq omega^{xi_2},$ then $beta(fg) leq omega^{xi},$ where $xi=max{xi_1+xi_2, xi_2+xi_1}}.$ These results do not assume the boundedness of the functions involved.