Soft X-ray spectroscopy of Compton-thick Seyfert 2 galaxies with BeppoSAX


الملخص بالإنكليزية

We present a X-ray spectroscopic study of the bright Compton-thick Seyfert 2s NGC1068 and the Circinus Galaxy, performed with BeppoSAX. Matt et al. (1997 and 1998) interpreted the spectrum above 4 keV as the superposition of Compton reflection and warm plasma scattering of the nuclear radiation. When this continuum is extrapolated downwards to 0.1 keV, further components arise. The NGC1068 spectrum is rich in emission lines, mainly due to K-alpha transitions of He-like elements from oxygen to iron, plus a K-alpha fluorescent line from neutral iron. If the ionized lines originate in the warm scatterer, its thermal and ionization structure must be complex. From the continuum and line properties, we estimate a column density, of the warm scatterer less than a few 10^21 atoms/cm/cm. In the Circinus Galaxy, the absence of highly ionized iron is consistent with a scattering medium with ionization parameter U<5 and density about a few times 10^22 atoms/cm/cm. In both cases the neutral iron line is most naturally explained as fluorescence in the medium responsible for the Compton reflection continuum. In NGC1068 an optically thin plasma emission with kT~500 eV and strongly sub-solar metallicity is required, while such a component is only marginal in the Circinus Galaxy. We tentatively identify this component as emission of diffuse hot gas in the nuclear starbursts. Possible causes for the metal depletion are discussed.

تحميل البحث