Abundances and Physical Conditions in the Interstellar Gas toward HD 192 639


الملخص بالإنكليزية

We present a study of the abundances and physical conditions in the interstellar gas toward the heavily reddened star HD 192639 [E_(B-V) = 0.64], based on analysis of FUSE and HST/STIS spectra covering the range from 912 to 1361 A. This work constitutes a survey of the analyses that can be performed to study the interstellar gas when combining data from different instruments. Low-velocity (-18 to -8 km/s) components are seen primarily for various neutral and singly ionized species such as C I, O I, S I, Mg II, Cl I, Cl II, Mn II, Fe II and Cu II. Numerous lines of H2 are present in the FUSE spectra, with a kinetic temperature for the lowest rotational levels T_(01) = (90 +/- 10) K. Analysis of the C I fine-structure excitation implies an average local density of hydrogen n_H = (16 +/- 3) cm^-3. The average electron density, derived from five neutral/first ion pairs under the assumption of photoionization equilibrium, is n_e = (0.11 +/- 0.02) cm^-3. The relatively complex component structure seen in high-resolution spectra of K I and Na I, the relatively low average density, and the measured depletions all suggest that the line of sight contains a number of diffuse clouds, rather than a single dense, translucent cloud. Comparisons of the fractions of Cl in Cl I and of hydrogen in molecular form suggest a higher molecular fraction, in the region(s) where H2 is present, than that derived considering the average line of sight. In general, such comparisons may allow the identification and characterization of translucent portions of such complex lines of sight. The combined data also show high-velocity components near -80 km/s for various species which appear to be predominantly ionized, and may be due to a radiative shock. A brief overview of the conditions in this gas will be given.

تحميل البحث