Observation of gravitational waves from two neutron star-black hole coalescences


الملخص بالإنكليزية

We report the observation of gravitational waves from two compact binary coalescences in LIGOs and Virgos third observing run with properties consistent with neutron star-black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo, and the second by all three LIGO-Virgo detectors. The source of GW200105 has component masses $8.9^{+1.2}_{-1.5},M_odot$ and $1.9^{+0.3}_{-0.2},M_odot$, whereas the source of GW200115 has component masses $5.7^{+1.8}_{-2.1},M_odot$ and $1.5^{+0.7}_{-0.3},M_odot$ (all measurements quoted at the 90% credible level). The probability that the secondarys mass is below the maximal mass of a neutron star is 89%-96% and 87%-98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are $280^{+110}_{-110}$ Mpc and $300^{+150}_{-100}$ Mpc, respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain spin or tidal deformation of the secondary component for either event. We infer a NSBH merger rate density of $45^{+75}_{-33},mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ when assuming GW200105 and GW200115 are representative of the NSBH population, or $130^{+112}_{-69},mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ under the assumption of a broader distribution of component masses.

تحميل البحث