Higher-Order Nodal Points in Two Dimensions


الملخص بالإنكليزية

A two-dimensional (2D) topological semimetal is characterized by the nodal points in its low-energy band structure. While the linear nodal points have been extensively studied, especially in the context of graphene, the realm beyond linear nodal points remains largely unexplored. Here, we explore the possibility of higher-order nodal points, i.e., points with higher-order energy dispersions, in 2D systems. We perform an exhaustive search over all 80 layer groups both with and without spin-orbit coupling (SOC), and reveal all possible higher-order nodal points. We show that they can be classified into two categories: the quadratic nodal point (QNP) and the cubic nodal point (CNP). All the 2D higher-order nodal points have twofold degeneracy, and the order of dispersion cannot be higher than three. QNPs only exist in the absence of SOC, whereas CNPs only exist in the presence of SOC. Particularly, the CNPs represent a new topological state not known before. We show that they feature nontrivial topological charges, leading to extensive topological edge bands. Our work completely settles the problem of higher-order nodal points, discovers novel topological states in 2D, and provides detailed guidance to realize these states. Possible material candidates and experimental signatures are discussed.

تحميل البحث