Counting Hamiltonian cycles in planar triangulations


الملخص بالإنكليزية

Hakimi, Schmeichel, and Thomassen in 1979 conjectured that every $4$-connected planar triangulation $G$ on $n$ vertices has at least $2(n-2)(n-4)$ Hamiltonian cycles, with equality if and only if $G$ is a double wheel. In this paper, we show that every $4$-connected planar triangulation on $n$ vertices has $Omega(n^2)$ Hamiltonian cycles. Moreover, we show that if $G$ is a $4$-connected planar triangulation on $n$ vertices and the distance between any two vertices of degree $4$ in $G$ is at least $3$, then $G$ has $2^{Omega(n^{1/4})}$ Hamiltonian cycles.

تحميل البحث