We present an analysis of the galaxy environment and physical properties of a partial Lyman limit system at z = 0.83718 with HI and metal line components closely separated in redshift space ($|Delta v| approx 400$ km/s) towards the background quasar HE1003+0149. The HST/COS far-ultraviolet spectrum provides coverage of lines of oxygen ions from OI to OV. Comparison of observed spectral lines with synthetic profiles generated from Bayesian ionization modeling reveals the presence of two distinct gas phases in the absorbing medium. The low-ionization phase of the absorber has sub-solar metallicities (1/10-th solar) with indications of [C/O] < 0 in each of the components. The OIV and OV trace a more diffuse higher-ionization medium with predicted HI column densities that are $approx 2$ dex lower. The quasar field observed with VLT/MUSE reveals three dwarf galaxies with stellar masses of $M^* sim 10^{8} - 10^{9}$ M$_odot$, and with star formation rates of $approx 0.5 - 1$ M$_odot$ yr$^{-1}$, at projected separations of $rho/R_{mathrm{vir}} approx 1.8 - 3.0$ from the absorber. Over a wider field with projected proper separation of $leq 5$ Mpc and radial velocity offset of $|Delta v| leq 1000$ km/s from the absorber, 21 more galaxies are identified in the $VLT$/VIMOS and Magellan deep galaxy redshift surveys, with 8 of them within $1$ Mpc and $500$ km/s, consistent with the line of sight penetrating a group of galaxies. The absorber presumably traces multiple phases of cool ($T sim 10^4$ K) photoionized intragroup medium. The inferred [C/O] < 0 hints at preferential enrichment from core-collapse supernovae, with such gas displaced from one or more of the nearby galaxies, and confined to the group medium.