Reconfigurable intelligent surfaces (RISs) have recently received widespread attention in the field of wireless communication. An RIS can be controlled to reflect incident waves from the transmitter towards the receiver; a feature that is believed to fundamentally contribute to beyond 5G wireless technology. The typical RIS consists of entirely passive elements, which requires the high-dimensional channel estimation to be done elsewhere. Therefore, in this paper, we present a semi-passive large-scale RIS architecture equipped with only a small fraction of simplified receiver units with only 1-bit quantization. Based on this architecture, we first propose an alternating direction method of multipliers (ADMM)-based approach to recover the training signals at the passive RIS elements, We then obtain the global channel by combining a channel sparsification step with the generalized approximate message passing (GAMP) algorithm. Our proposed scheme exploits both the sparsity and low-rankness properties of the channel in the joint spatial-frequency domain of a wideband mmWave multiple-input-multiple-output (MIMO) communication system. Simulation results show that the proposed algorithm can significantly reduce the pilot signaling needed for accurate channel estimation and outperform previous methods, even with fewer receiver units.