Energy Conditions in $f(P)$ Gravity


الملخص بالإنكليزية

$f(P)$ gravity is a novel extension of ECG in which the Ricci scalar in the action is replaced by a function of the curvature invariant $P$ which represents the contractions of the Riemann tensor at the cubic order cite{p}. The present work is concentrated on bounding some $f(P)$ gravity models using the concept of energy conditions where the functional forms of $f(P)$ are represented as textbf{a)} $f(P) = alpha sqrt{P}$, and textbf{b)} $f(P) = alpha exp (P)$, where $alpha$ is the sole model parameter. Energy conditions are interesting linear relationships between pressure and density and have been extensively employed to derive interesting results in Einsteins gravity, and are also an excellent tool to impose constraints on any cosmological model. To place the bounds, we ensured that the energy density must remain positive, the pressure must remain negative, and the EoS parameter must attain a value close to $-1$ to make sure that the bounds respect the accelerated expansion of the Universe and are also in harmony with the latest observational data. We report that for both the models, suitable parameter spaces exist which satisfy the aforementioned conditions and therefore posit the $f(P)$ theory of gravity to be a promising modified theory of gravitation.

تحميل البحث