In this paper we introduce the fractional dark energy model, in which the accelerated expansion of the Universe is driven by a nonrelativistic gas (composed by either fermions or bosons) with a noncanonical kinetic term. The kinetic energy is inversely proportional to the cube of the absolute value of the momentum for a fluid with an equation of state parameter equal to minus one, and whose corresponding energy density mimics the one of the cosmological constant. In the general case, the dark energy equation of state parameter (times three) is precisely the exponent of the momentum in the kinetic term. We show that this inverse momentum operator appears in fractional quantum mechanics and it is the inverse of the Riesz fractional derivative. The observed vacuum energy can be obtained through the integral of the Fermi-Dirac (or Bose-Einstein) distribution and the lowest allowed energy of the particles. Finally, a possible thermal production and fate of fractional dark energy is investigated.