We analyze the vector nulls of velocity, Lagrangian acceleration, and vorticity, coming from direct numerical simulations of forced homogeneous isotropic turbulence at $Re_lambda in [40-610]$. We show that the clustering of velocity nulls is much stronger than those of acceleration and vorticity nulls. These acceleration and vorticity nulls, however, are denser than the velocity nulls. We study the scaling of clusters of these null points with $Re_lambda$ and with characteristic turbulence lengthscales. We also analyze datasets of point inertial particles with Stokes numbers $St = 0.5$, 3, and 6, at $Re_lambda = 240$. Inertial particles display preferential concentration with a degree of clustering that resembles some properties of the clustering of the Lagrangian acceleration nulls, in agreement with the proposed sweep-stick mechanism of clustering formation.