Hutch++: Optimal Stochastic Trace Estimation


الملخص بالإنكليزية

We study the problem of estimating the trace of a matrix $A$ that can only be accessed through matrix-vector multiplication. We introduce a new randomized algorithm, Hutch++, which computes a $(1 pm epsilon)$ approximation to $tr(A)$ for any positive semidefinite (PSD) $A$ using just $O(1/epsilon)$ matrix-vector products. This improves on the ubiquitous Hutchinsons estimator, which requires $O(1/epsilon^2)$ matrix-vector products. Our approach is based on a simple technique for reducing the variance of Hutchinsons estimator using a low-rank approximation step, and is easy to implement and analyze. Moreover, we prove that, up to a logarithmic factor, the complexity of Hutch++ is optimal amongst all matrix-vector query algorithms, even when queries can be chosen adaptively. We show that it significantly outperforms Hutchinsons method in experiments. While our theory mainly requires $A$ to be positive semidefinite, we provide generalized guarantees for general square matrices, and show empirical gains in such applications.

تحميل البحث