Iron telluride ladder compounds: Predicting the structural and magnetic properties of BaFe$_2$Te$_3$


الملخص بالإنكليزية

Since the discovery of pressure-induced superconductivity in the two-leg ladder system BaFe$_2X_3$ ($X$=S, Se), with the 3$d$ iron electronic density $n = 6$, the quasi-one-dimensional iron-based ladders have attracted considerable attention. Here, we use Density Functional Theory (DFT) to predict that the novel $n = 6$ iron ladder BaFe$_2$Te$_3$ could be stable with a similar crystal structure as BaFe$_2$Se$_3$. Our results also indicate that BaFe$_2$Te$_3$ will display the complex 2$times$2 Block-type magnetic order. Due to the magnetic striction effects of this Block order, BaFe$_2$Te$_3$ should be a magnetic noncollinear ferrielectric system with a net polarization $0.31$ $mu$C/cm$^2$. Compared with the S- or Se-based iron ladders, the electrons of the Te-based ladders are more localized, implying that the degree of electronic correlation is enhanced for the Te case which may induce additional interesting properties. The physical and structural similarity with BaFe$_2$Se$_3$ also suggests that BaFe$_2$Te$_3$ could become superconducting under high pressure.

تحميل البحث