Cryogen-free variable temperature scanning SQUID microscope


الملخص بالإنكليزية

Scanning Superconducting QUantum Interference Device (SQUID) microscopy is a powerful tool for imaging local magnetic properties of materials and devices, but it requires a low-vibration cryogenic environment, traditionally achieved by thermal contact with a bath of liquid helium or the mixing chamber of a wet dilution refrigerator. We mount a SQUID microscope on the 3 K plate of a Bluefors cryocooler and characterize its vibration spectrum by measuring SQUID noise in a region of sharp flux gradient. By implementing passive vibration isolation, we reduce relative sensor-sample vibrations to 20 nm in-plane and 15 nm out-of-plane. A variable-temperature sample stage that is thermally isolated from the SQUID sensor enables measurement at sample temperatures from 2.8 K to 110 K. We demonstrate these advances by imaging inhomogeneous diamagnetic susceptibility and vortex pinning in optimally-doped YBCO above 90 K.

تحميل البحث