We installed a source for ultracold neutrons at a new, dedicated spallation target at TRIUMF. The source was originally developed in Japan and uses a superfluid-helium converter cooled to 0.9$,$K. During an extensive test campaign in November 2017, we extracted up to 325000 ultracold neutrons after a one-minute irradiation of the target, over three times more than previously achieved with this source. The corresponding ultracold-neutron density in the whole production and guide volume is 5.3$,$cm$^{-3}$. The storage lifetime of ultracold neutrons in the source was initially 37$,$s and dropped to 24$,$s during the eighteen days of operation. During continuous irradiation of the spallation target, we were able to detect a sustained ultracold-neutron rate of up to 1500$,$s$^{-1}$. Simulations of UCN production, UCN transport, temperature-dependent UCN yield, and temperature-dependent storage lifetime show excellent agreement with the experimental data and confirm that the ultracold-neutron-upscattering rate in superfluid helium is proportional to $T^7$.