In superfluid systems several sound modes can be excited, as for example first and second sound in liquid helium. Here, we excite propagating and standing waves in a uniform two-dimensional Bose gas and we characterize the propagation of sound in both the superfluid and normal regime. In the superfluid phase, the measured speed of sound is well described by a two-fluid hydrodynamic model, and the weak damping rate is well explained by the scattering with thermal excitations. In the normal phase the sound becomes strongly damped due to a departure from hydrodynamic behavior.