The free energetics of water density fluctuations in bulk water, at interfaces, and in hydrophobic confinement inform the hydration of hydrophobic solutes as well as their interactions and assembly. The characterization of such free energetics is typically performed using enhanced sampling techniques such as umbrella sampling. In umbrella sampling, order parameter distributions obtained from adjacent biased simulations must overlap in order to estimate free energy differences between biased ensembles. Many biased simulations are typically required to ensure such overlap, which exacts a steep computational cost. We recently introduced a sparse sampling method, which circumvents the overlap requirement by using thermodynamic integration to estimate free energy differences between biased ensembles. Here we build upon and generalize sparse sampling for characterizing the free energetics of water density fluctuations in systems near liquid-vapor coexistence. We also introduce sensible heuristics for choosing the biasing potential parameters and strategies for adaptively refining them, which facilitate the estimation of such free energetics accurately and efficiently. We illustrate the method by characterizing the free energetics of cavitation in a large volume in bulk water. We also use sparse sampling to characterize the free energetics of capillary evaporation for water confined between two hydrophobic plates. In both cases, sparse sampling is nearly two orders of magnitude faster than umbrella sampling. Given its efficiency, the sparse sampling method is particularly well suited for characterizing free energy landscapes for systems wherein umbrella sampling is prohibitively expensive.