The Ramsey property for Banach spaces and Choquet simplices


الملخص بالإنكليزية

We show that the Gurarij space $mathbb{G}$ has extremely amenable automorphism group. This answers a question of Melleray and Tsankov. We also compute the universal minimal flow of the automorphism group of the Poulsen simplex $mathbb{P}$ and we prove that it consists of the canonical action on $mathbb{P}$ itself. This answers a question of Conley and T{o}rnquist. We show that the pointwise stabilizer of any closed proper face of $mathbb{P}$ is extremely amenable. Similarly, the pointwise stabilizer of any closed proper biface of the unit ball of the dual of the Gurarij space (the Lusky simplex) is extremely amenable. These results are obtained via several Kechris-Pestov-Todorcevic correspondences, by establishing the approximate Ramsey property for several classes of finite-dimensional Banach spaces and function systems and thei

تحميل البحث