The degree of freedom of orbital angular momentum (OAM) is an important resource in high-dimensional quantum information processing, as the quantum number of OAM can be infinite. The Dove prism (DP) is a most common tool to manipulate the OAM light, such as in interferometers. However, the Dove prism does not preserve the polarization of the photon states and decreases the sorting fidelity of the interferometer. In this work, we analyze the polarization-dependent effect of the DP on single-path Sagnac interferometers. The results are instructive to quantum information processing with OAM light. We also proposed a modified single-path beam splitter Sagnac interferometer (BSSI), of which the sorting fidelity is independent on input polarization and can be 100% in principle. The single-path BSSI is stable for free running. These merits are crucial in quantum information processing, such as quantum cryptography.