We present an analytical method for computing the mean cover time of a random walk process on arbitrary, complex networks. The cover time is defined as the time a random walker requires to visit every node in the network at least once. This quantity is particularly important for random search processes and target localization in network topologies. Based on the global mean first passage time of target nodes we derive an estimate for the cumulative distribution function of the cover time based on first passage time statistics. We show that our result can be applied to various model networks, including ErdH{o}s-Renyi and Barabasi-Albert networks, as well as various real-world networks. Our results reveal an intimate link between first passage and cover time statistics in networks in which structurally induced temporal correlations decay quickly and offer a computationally efficient way for estimating cover times in network related applications.