Silicon-on-chip (SOI) photonic circuit is the most promising platform for scalable quantum information technology for its low loss, small footprint, CMOS-compatible and telecom communications techniques compatible. Multiple multiplexed entanglement sources include: energy-time, time-bin and polarization entangled sources based on 1-cm length single silicon nanowire, all these sources are compatible with (100GHz) dense-wave-division-multiplexing (DWDM) system. Different methods such as two photon interference pattern, Bell-Inequality and quantum state tomography are used to characterize the quality of these entangled sources. Multiple entanglements are generated over more than 5 channel pairs with high raw (net) visibilities around 97% (100%). The emission spectral brightness of these entangled sources reaches 4.2*105 /(s.nm.mW). The quality of the photon pair generated in continuous and pulse pump regimes are compared. High qualities of these multiplexed entanglement sources make them very promising to be used in future minimized quantum communication and computation systems.