It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a setup where this path information is erased, the interference can reappear. Such a setup is known as a quantum eraser. A generalization of quantum eraser to a three-slit interference is theoretically analyzed. It is shown that three complementary interference patterns can arise out of the quantum erasing process.