The Ryu-Takayanagi Formula from Quantum Error Correction


الملخص بالإنكليزية

I argue that a version of the quantum-corrected Ryu-Takayanagi formula holds in any quantum error-correcting code. I present this result as a series of theorems of increasing generality, with the final statement expressed in the language of operator-algebra quantum error correction. In AdS/CFT this gives a purely boundary interpretation of the formula. I also extend a recent theorem, which established entanglement-wedge reconstruction in AdS/CFT, when interpreted as a subsystem code, to the more general, and I argue more physical, case of subalgebra codes. For completeness, I include a self-contained presentation of the theory of von Neumann algebras on finite-dimensional Hilbert spaces, as well as the algebraic definition of entropy. The results confirm a close relationship between bulk gauge transformations, edge-modes/soft-hair on black holes, and the Ryu-Takayanagi formula. They also suggest a new perspective on the homology constraint, which basically is to get rid of it in a way that preserves the validity of the formula, but which removes any tension with the linearity of quantum mechanics. Moreover they suggest a boundary interpretation of the bit threads recently introduced by Freedman and Headrick.

تحميل البحث