All-stages-implicit and strong-stability-preserving implicit-explicit Runge-Kutta time discretization schemes for hyperbolic systems with stiff relaxation terms


الملخص بالإنكليزية

We construct eight implicit-explicit (IMEX) Runge-Kutta (RK) schemes up to third order of the type in which all stages are implicit so that they can be used in the zero relaxation limit in a unified and convenient manner. These all-stages-implicit (ASI) schemes attain the strong-stability-preserving (SSP) property in the limiting case, and two are SSP for not only the explicit part but also the implicit part and the entire IMEX scheme. Three schemes can completely recover to the designed accuracy order in two sides of the relaxation parameter for both equilibrium and non-equilibrium initial conditions. Two schemes converge nearly uniformly for equilibrium cases. These ASI schemes can be used for hyperbolic systems with stiff relaxation terms or differential equations with some type constraints.

تحميل البحث