Hydrogen Bonding: A Mechanism for Tuning Electronic and Optical Properties of Hybrid Organic-Inorganic Frameworks


الملخص بالإنكليزية

Here we demonstrate that significant progress in this area may be achieved by introducing structural elements that form hydrogen bonds with environment. Considering several examples of hybrid framework materials with different structural ordering containing protonated sulfonium cation H3S+ that forms strong hydrogen bonds with electronegative halogen anions (Cl-, F-), we found that hydrogen bonding increases the structural stability of the material and may be used for tuning electronic states near the bandgap. We suggest that such a behavior has a universal character and should be observed in hybrid inorganic-organic framework materials containing protonated cations. This effect may serve as a viable route for optoelectronic and photovoltaic applications.

تحميل البحث