On birational superrigidity and conditional birational superrigidity of certain Fano hypersurfaces


الملخص بالإنكليزية

We prove birational superrigidity of every hypersurface of degree N in P^N with singular locus of dimension s, under the assumption that N is at least 2s+8 and it has only quadratic singularities of rank at least N-s. Combined with the results of I. A. Cheltsov and T. de Fernex, this completes the list of birationally superrigid singular hypersurfaces with only ordinary double points except in dimension 4 and 6. Further we impose an additional condition on the base locus of a birational map to a Mori fiber space. Then we prove conditional birational superrigidity of certain smooth Fano hypersurfaces of index larger or equal to 2, and birational superrigidity of smooth Fano complete intersections of index 1 in weak form.

تحميل البحث