ARPES insights on the metallic states of YbB6(001): E(k) dispersion, temporal changes and spatial variation


الملخص بالإنكليزية

We report high resolution Angle Resolved PhotoElectron Spectroscopy (ARPES) results on the (001) cleavage surface of YbB$_{6}$, a rare-earth compound which has been recently predicted to host surface electronic states with topological character. We observe two types of well-resolved metallic states, whose Fermi contours encircle the time-reversal invariant momenta of the YbB$_{6}$(001) surface Brillouin zone, and whose full (E,$k$)-dispersion relation can be measured wholly unmasked by states from the rest of the electronic structure. Although the two-dimensional character of these metallic states is confirmed by their lack of out-of-plane dispersion, two new aspects are revealed in these experiments. Firstly, these states do not resemble two branches of opposite, linear velocity that cross at a Dirac point, but rather straightforward parabolas which terminate to high binding energy with a clear band bottom. Secondly, these states are sensitive to time-dependent changes of the YbB$_{6}$ surface under ultrahigh vacuum conditions. Adding the fact that these data from cleaved YbB$_{6}$ surfaces also display spatial variations in the electronic structure, it appears there is little in common between the theoretical expectations for an idealized YbB$_{6}$(001) crystal truncation on the one hand, and these ARPES data from real cleavage surfaces on the other.

تحميل البحث