Anomalous superfluid density in quantum critical superconductors


الملخص بالإنكليزية

When a second-order magnetic phase transition is tuned to zero temperature by a non-thermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these `quantum critical superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature $T_c$ often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below $T_c$ is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points showing that the superfluid density in these nodal superconductors universally exhibit, unlike the expected $T$-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this non-integer power-law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta $bm{k}$ close to the nodes in the superconducting energy gap $Delta(bm{k})$. We suggest that such `nodal criticality may have an impact on low-energy properties of quantum critical superconductors.

تحميل البحث