Fix the base field Q of rational numbers and let BP<n> denote the family of motivic truncated Brown-Peterson spectra over Q. We employ a local-to-global philosophy in order to compute the motivic Adams spectral sequence converging to the bi-graded homotopy groups of BP<n>. Along the way, we provide a new computation of the homotopy groups of BP<n> over the 2-adic rationals, prove a motivic Hasse principle for the spectra BP<n>, and deduce several classical and recent theorems about the K-theory of particular fields.